Any process by which callose is transported to, and/or maintained in, a specific location during the defense response. Callose is a linear 1,3-beta-d-glucan formed from UDP-glucose and is found in certain plant cell walls.
Organism
Arabidopsis thaliana
Click Gene ID to show a list of co-expressed genes.
This gene is predicted to encode a protein involved in negatively regulating salicylic acid-related defense responses and cell death programs. nsl1 mutants develop necrotic lesions spontaneously and show other features of a defense response, such as higher levels of SA and disease resistance-related transcripts, in the absence of a biotic stimulus. The NSL1 protein is predicted to have a MACPF domain, found in proteins that form a transmembrane pore in mammalian immune responses. NSL1 transcript levels do not appear to change in response to biotic stresses, but are elevated by cycloheximide in seedlings, and by sodium chloride in roots.
Encodes a callose synthase that is required for wound and papillary callose formation in response to fungal pathogens Erysiphe and Blumeria. Mutants are resistant to P. parasitica and exhibit an exaggerated PR1 response.Contributes to PAMP-induced basal defense.
Reactions, triggered in response to the presence of a foreign body or the occurrence of an injury, which result in restriction of damage to the organism attacked or prevention/recovery from the infection caused by the attack.
Any process by which callose is transported to, and/or maintained in, a specific location. Callose is a linear 1,3-beta-d-glucan formed from UDP-glucose and is found in certain plant cell walls.
Any process by which callose is transported to, and/or maintained in, the cell wall during the defense response. Callose is a linear 1,3-beta-d-glucan formed from UDP-glucose and is found in certain plant cell walls.