Type A response regulator highly similar to bacterial two-component response regulators. Rapidly induced by cytokinin. Involved in red-light signaling. Acts redundantly with ARR3 in the control of circadian period in a cytokinin-independent manner.
Encodes an auxin efflux carrier that is similar to bacterial membrane transporters. Root-specific role in the transport of auxin. Acts downstream of CTR1 and ethylene biosynthesis, in the same pathway as EIN2 and AUX1, and independent from EIN3 and EIN5/AIN1 pathway. In the root, the protein localizes apically in epidermal and lateral root cap cells and predominantly basally in cortical cells. Functions may be regulated by phosphorylation status. EIR1 expression is induced by brassinolide treatment in the brassinosteroid-insensitive br1 mutant. Gravistimulation resulted in asymmetric PIN2 distribution, with more protein degraded at the upper side of the gravistimulated root. Protein turnover is affected by the proteasome and by endosomal cycling. Plasma membrane-localized PIN proteins mediate a saturable efflux of auxin. PINs mediate auxin efflux from mammalian and yeast cells without needing additional plant-specific factors. The action of PINs in auxin efflux is distinct from PGPs, rate-limiting, specific to auxins and sensitive to auxin transport inhibitors. Membrane sterol composition is essential for the acquisition of PIN2 polarity.
As this page just shows up to 10 assays to the query, if you wish to have the complete list of assays that the query gene/probe was specifically expressed, click here.
Encodes a Type-A response regulator that is responsive to cytokinin treatment. Its C-ter domain is very short in comparison to other Arabidopsis ARRs (17 total). Arr6 protein is stabilized by cytokinin.
Encodes a transcription repressor that mediates a negative feedback loop in cytokinin signalling. ARR5 expression is upregulated by Class I KNOX genes. Arr5 protein is stabilized by cytokinin in a two-component phosphorelay.
Encodes a nuclear response regulator that acts as a negative regulator in cytokinin-mediated signal transduction. Transcript accumulates in leaves and roots in response to cytokinin treatment.
A change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a red light stimulus. Red light is electromagnetic radiation of wavelength of 580-700nm. An example of this response is seen at the beginning of many plant species developmental stages. These include germination, and the point when cotyledon expansion is triggered. In certain species these processes take place in response to absorption of red light by the pigment molecule phytochrome, but the signal can be reversed by exposure to far red light. During the initial phase the phytochrome molecule is only present in the red light absorbing form, but on absorption of red light it changes to a far red light absorbing form, triggering progress through development. An immediate short period of exposure to far red light entirely returns the pigment to its initial state and prevents triggering of the developmental process. A thirty minute break between red and subsequent far red light exposure renders the red light effect irreversible, and development then occurs regardless of whether far red light exposure subsequently occurs.
Any process that modulates the frequency, rate or extent of a circadian rhythm. A circadian rhythm is a biological process in an organism that recurs with a regularity of approximately 24 hours.
A conserved series of molecular signals found in prokaryotes and eukaryotes; involves autophosphorylation of a histidine kinase and the transfer of the phosphate group to an aspartate that then acts as a phospho-donor to response regulator proteins.
A change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a cytokinin stimulus.
The series of molecular signals initiated upon sensing of red light by a photoreceptor molecule. Red light is electromagnetic radiation of wavelength of 580-700nm. An example of this response is seen at the beginning of many plant species developmental stages. These include germination, and the point when cotyledon expansion is triggered. In certain species these processes take place in response to absorption of red light by the pigment molecule phytochrome, but the signal can be reversed by exposure to far red light. During the initial phase the phytochrome molecule is only present in the red light absorbing form, but on absorption of red light it changes to a far red light absorbing form, triggering progress through development. An immediate short period of exposure to far red light entirely returns the pigment to its initial state and prevents triggering of the developmental process. A thirty minute break between red and subsequent far red light exposure renders the red light effect irreversible, and development then occurs regardless of whether far red light exposure subsequently occurs.