Co-expression analysis

Gene ID At5g23830
Gene name MD-2-related lipid recognition domain-containing protein / ML domain-containing protein
Module size 9 genes
NF 0.58
%ile 79.6



Co-expression network

pink confeito: Transcription factor, green bicone: Binding protein, red cone: Enzyme protein, blue sphere: Other protein
large node: VF over 0.50, middle node: over 0.25, small node: below 0.25



Co-expressed genes

Click gene/probe ID to show a list of genes that are co-expressed with the gene.

VF %ile CC Gene ID Repr. ID Gene name Func. O.I. H.G. S.X. Other DB
0.3846.71.00At5g23830832448MD-2-related lipid recognition domain-containing protein / ML domain-containing proteinF:molecular_function unknown;P:biological_process unknown;C:endomembrane system;PO.I.H.G.S.X.
0.8894.00.77At3g29250822580copper ion binding / oxidoreductaseF:oxidoreductase activity, copper ion binding;P:metabolic process;C:cellular_component unknown;BOFMPAVO.I.H.G.S.X.
0.7888.60.74At5g42590834266CYP71A16putative cytochrome P450O.I.H.G.S.X.
0.7586.90.78At1g66800842998cinnamyl-alcohol dehydrogenase family / CAD familysimilar to Eucalyptus gunnii alcohol dehydrogenase of unknown physiological function (GI:1143445), apple tree, PIR:T16995; NOT a cinnamyl-alcohol dehydrogenaseO.I.H.G.S.X.
0.7385.50.80At5g23840832449MD-2-related lipid recognition domain-containing protein / ML domain-containing proteinF:molecular_function unknown;P:biological_process unknown;C:endomembrane system;PO.I.H.G.S.X.
0.6781.60.77At4g12550826868AIR1isolated from differential screening of a cDNA library from auxin-treated root culture. encodes a protein that is related to a large family of proteins that consist of a proline-rich or glycine-rich N-terminus and a hydrophobic, possibly membrane spanning C-terminus.O.I.H.G.S.X.
0.5065.30.76At3g22570821829protease inhibitor/seed storage/lipid transfer protein (LTP) family proteinF:lipid binding;P:lipid transport;C:endomembrane system;PO.I.H.G.S.X.
0.4862.50.74At5g48000834851CYP708A2Encodes a member of the CYP708A family of cytochrome P450 enzymes. THAH appears to add a hydroxyl group to the triterpene thalianol. thah1 mutants have an elevated accumulation of thalianol. thah1-1 mutants have longer roots than wild type plants. Thalian-diol and desaturated thalian-diol are lost from the root extracts of thah1-1 mutants. Overexpression of the sequence from At5g48000.1 rescues the thah1-1 mutant phenotype (Field 2008); it is unknown whether the shorter sequences associated with other gene models would provide functional complementation.O.I.H.G.S.X.
0.4761.20.74At5g47990834850CYP705A5encodes a member of the CYP705A family of cytochrome P450 enzymes. It appears to catalyze the addition of a double bond to thalian-diol at carbon 15. Reduced levels of THAD expression lead to a build up of thalian-diol in root extracts. thad1-1 mutants also have longer roots than wild type seedlings.O.I.H.G.S.X.

Click More genes

Link to AtGenExpress Visualization Tool



Specific experiments for the module

Std2 GX %ile GSM ID Assay name GSE ID Experiment title Link to GEO
294.2100.0GSM205364met1-3_leaf_second-selfed generation_rep01GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
190.0100.0GSM205430met1-3_leaf_fourth-selfed generation_rep02GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
137.799.9GSM205428met1-3_leaf_fourth-selfed generation_rep01GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
123.999.9GSM205426met1-3_leaf_second-selfed generation_rep02GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
57.499.8GSM253646Low_Mo_seg_pool_Ler_col_F2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
57.099.8GSM143307Low_Na_seg_pool_tsu_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
56.799.8GSM143309Tsu_genomic_hyb_2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
55.099.8GSM143306High_Na_seg_pool_tsu_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
54.099.8GSM143308Tsu_genomic_hyb_3GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
51.299.8GSM184556Whole roots 2hr KNO3 treated then incubated in protoplast-generating solution minus enzymes, biological rep2GSE7631Cell-specific nitrogen responses in the Arabidopsis rootLink to GEO
50.299.8GSM205432Col_ leaf_ wildtype_rep01GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
47.499.8GSM143299High_Na_seg_pool_ts_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
46.799.8GSM143310Tsu_genomic_hyb_1GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
45.199.8GSM253649Col-0-2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
40.599.8GSM253645High_Mo_seg_pool_Ler_col_F2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
39.599.8GSM253647Col-0 3GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
37.499.7GSM143298Low_Na_seg_pool_ts_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
33.799.7GSM143301Ts_genomic_hyb_2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
33.199.7GSM143302Ts_genomic_hyb_1GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
32.599.7GSM143300Ts_genomic_hyb_3GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
30.499.7GSM253648Col-0-1GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
28.299.7GSM205435Col_ leaf_ wildtype_rep02GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
25.299.6GSM253650Ler 3GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
24.399.6GSM184537Whole roots 2hr KCl control treated then frozen, biological rep1GSE7631Cell-specific nitrogen responses in the Arabidopsis rootLink to GEO
22.499.6GSM253651Ler 1GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
21.399.6GSM253652Ler 2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
20.199.6GSM133762Lindsey_1-14_torpedo-root_Rep1_ATH1GSE5730Transcriptional profiling of laser-capture micro-dissected embryonic tissuesLink to GEO
14.399.4GSM176879AWP_Control_1GSE7334Microarray Analysis of Arabidopsis Genome Response to Aluminum StressLink to GEO
13.899.4GSM133766Lindsey_1-18_torpedo-root_Rep3_ATH1GSE5730Transcriptional profiling of laser-capture micro-dissected embryonic tissuesLink to GEO
11.199.2GSM131303AtGen_6-2611_Osmoticstress-Shoots-24.0h_Rep1GSE5622AtGenExpress: Stress Treatments (Osmotic stress)Link to GEO

Biological processes inferred to relate to the module

SFGenesGO IDProcess NameLink to AmiGO
0.3332GO:0080003The chemical reactions and pathways involving the triterpene thalianol.Link to AmiGO
0.0911GO:0010102The process by which the anatomical structures of lateral root are generated and organized. Morphogenesis pertains to the creation of form. A lateral root is one formed from pericycle cells located on the xylem radius of the root, as opposed to the initiation of the main root from the embryo proper.Link to AmiGO
0.0442GO:0048364The process whose specific outcome is the progression of the root over time, from its formation to the mature structure. The root is the water- and mineral-absorbing part of a plant which is usually underground, does not bear leaves, tends to grow downwards and is typically derived from the radicle of the embryo.Link to AmiGO

KEGG PATHWAY inferred to related to the module

SFGenesKEGG IDPathway nameLink to KEGG
0.027100945Stilbenoid, diarylheptanoid and gingerol biosynthesisLink to KEGG PATHWAY
0.026100903Limonene and pinene degradationLink to KEGG PATHWAY

Inter-species module comparison

Select a plant to compare co-expressed genes between species.
Glycine_max
Hordeum_vulgare
Oryza_sativa
Populus_trichocarpa
Triticum_aestivum
Vitis_vinifera
Zea_mays



Back to the CoP portal site

Back to the KAGIANA project homepage