Co-expression analysis

Gene ID At5g20220
Gene name zinc knuckle (CCHC-type) family protein
Module size 5 genes
NF 0.42
%ile 58.7



Co-expression network

pink confeito: Transcription factor, green bicone: Binding protein, red cone: Enzyme protein, blue sphere: Other protein
large node: VF over 0.50, middle node: over 0.25, small node: below 0.25



Co-expressed genes

Click gene/probe ID to show a list of genes that are co-expressed with the gene.

VF %ile CC Gene ID Repr. ID Gene name Func. O.I. H.G. S.X. Other DB
0.5065.31.00At5g20220832144zinc knuckle (CCHC-type) family proteinF:unfolded protein binding, heat shock protein binding, zinc ion binding, nucleic acid binding;P:protein folding;C:unknown;VMFOPBO.I.H.G.S.X.
0.6075.70.89At1g76570843990chlorophyll A-B binding family proteinF:chlorophyll binding;P:response to blue light, response to far red light, photosynthesis;C:light-harvesting complex, chloroplast, membrane;POMO.I.H.G.S.X.
0.4050.80.92At5g19850832105hydrolase, alpha/beta fold family proteinF:hydrolase activity;P:unknown;C:unknown;BOMPFAO.I.H.G.S.X.
0.3846.70.90At1g66330842950senescence-associated family proteinF:unknown;P:senescence;C:unknown;PBO.I.H.G.S.X.
0.3133.80.88At1g53090841743SPA4 (SPA1-RELATED 4)Encodes a member of the SPA (suppressor of phyA-105) protein family (SPA1-SPA4). SPA proteins contain an N-terminal serine/threonine kinase-like motif followed by a coiled-coil structure and a C-terminal WD-repeat domain. SPA proteins function redundantly in suppressing photomorphogenesis in dark- and light-grown seedlings. SPA4 (and SPA3) predominantly regulates elongation growth in adult plants.O.I.H.G.S.X.

Click More genes

Link to AtGenExpress Visualization Tool



Specific experiments for the module

Std2 GX %ile GSM ID Assay name GSE ID Experiment title Link to GEO
93.199.9GSM143310Tsu_genomic_hyb_1GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
80.599.9GSM143299High_Na_seg_pool_ts_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
76.799.9GSM143301Ts_genomic_hyb_2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
76.599.9GSM106833opr3_JA_0.5 hr_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
76.299.9GSM253652Ler 2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
74.899.9GSM143298Low_Na_seg_pool_ts_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
72.499.9GSM253646Low_Mo_seg_pool_Ler_col_F2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
71.799.9GSM253645High_Mo_seg_pool_Ler_col_F2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
70.399.9GSM143308Tsu_genomic_hyb_3GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
68.299.9GSM143307Low_Na_seg_pool_tsu_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
66.699.8GSM143300Ts_genomic_hyb_3GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
66.499.8GSM253650Ler 3GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
63.899.8GSM253647Col-0 3GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
59.699.8GSM143306High_Na_seg_pool_tsu_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
56.499.8GSM143302Ts_genomic_hyb_1GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
54.799.8GSM253648Col-0-1GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
54.099.8GSM253649Col-0-2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
50.999.8GSM143309Tsu_genomic_hyb_2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
45.999.8GSM106919opr3_OPDA_0.5 hr_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
43.199.8GSM253651Ler 1GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
35.299.7GSM106825opr3_0 hr_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
31.299.7GSM106920opr3_OPDA_0.5 hr_Rep2GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
30.299.7GSM106934opr3_OPDA_8 hrs_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
27.099.7GSM106908opr3_JA_0.5 hr_Rep3GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
26.699.7GSM106922opr3_OPDA_2 hrs_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
26.099.7GSM106921opr3_OPDA_0.5 hr_Rep3GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
24.799.6GSM106827opr3_0 hr_Rep2GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
23.799.6GSM106909opr3-JA_2 hrs_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
23.799.6GSM131592ATGE_36_BGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
22.799.6GSM131591ATGE_36_AGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
20.899.6GSM106907opr3_JA_0.5 hr_Rep2GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
20.199.6GSM106924opr3_OPDA_2 hrs_Rep3GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
19.999.6GSM239254CaMV::DME stamenGSE9408Identification of putative Arabidopsis DEMETER target genes by GeneChip AnalysisLink to GEO
19.199.6GSM131593ATGE_36_CGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
19.099.5GSM131617ATGE_53_CGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
18.799.5E-MEXP-1592-raw-cel-1617526864
17.999.5GSM106966opr3_OPDA_8 hrs_Rep3GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
17.199.5GSM131615ATGE_53_AGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
16.999.5GSM131616ATGE_53_BGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
16.899.5E-MEXP-1592-raw-cel-1617526968
15.899.5GSM205435Col_ leaf_ wildtype_rep02GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
15.699.5GSM106973ws_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
14.599.4GSM106910opr3_JA_2 hrs_rep2GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
14.299.4GSM106911opr2_JA_2 hrs_Rep3GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
13.699.4E-MEXP-849-raw-cel-1181980966
13.399.4GSM184556Whole roots 2hr KNO3 treated then incubated in protoplast-generating solution minus enzymes, biological rep2GSE7631Cell-specific nitrogen responses in the Arabidopsis rootLink to GEO
12.799.3GSM133966Fukuda_1-11_10A_Rep1_ATH1GSE5748In vitro tracheary element transdifferentiation of Col-0 suspension cells.Link to GEO
12.499.3GSM134206Murray_3-3_D5-GROWTH_Rep1_ATH1GSE5750Growth of suspension-cultured cellsLink to GEO
12.299.3GSM131582ATGE_33_AGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
11.999.3GSM133967Fukuda_1-12_10B_Rep2_ATH1GSE5748In vitro tracheary element transdifferentiation of Col-0 suspension cells.Link to GEO
11.799.3GSM134208Murray_3-4_D7-GROWTH_Rep1_ATH1GSE5750Growth of suspension-cultured cellsLink to GEO
11.699.3GSM106912opr3_JA 8hrs_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
11.599.3GSM131583ATGE_33_BGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
11.599.3GSM131584ATGE_33_CGSE5632AtGenExpress: Developmental series (flowers and pollen)Link to GEO
11.599.3GSM128729Hennig_1-1_flower-buds-CK_021114_1_A_Rep1_ATH1GSE5526Transcriptional Programs of Early Reproductive Stages in ArabidopsisLink to GEO
11.399.3GSM106923opr3_OPDA_2 hrs_Rep2GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
11.199.2E-MEXP-1592-raw-cel-1617526872
11.199.2E-MEXP-1592-raw-cel-1617526896
10.699.2E-MEXP-1592-raw-cel-1617526992
10.499.2E-MEXP-849-raw-cel-1181980942
9.799.1E-MEXP-849-raw-cel-1181980974
9.699.1E-MEXP-1592-raw-cel-1617526936
9.399.1E-MEXP-849-raw-cel-1181980958
9.199.1GSM133965Fukuda_1-10_8B_Rep2_ATH1GSE5748In vitro tracheary element transdifferentiation of Col-0 suspension cells.Link to GEO
9.099.1E-MEXP-849-raw-cel-1181980902
8.699.0GSM106828opr3_0 hr_Rep3GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO

Biological processes inferred to relate to the module

SFGenesGO IDProcess NameLink to AmiGO
0.1541GO:0010149A preprogrammed process associated with the dismantling of an anatomical structure and an overall decline in metabolism. This may include the breakdown of organelles, membranes and other cellular components. An example of this process is found in Arabidopsis thaliana, when older leaves or floral organs are shed.Link to AmiGO
0.0511GO:0009637A change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a blue light stimulus. Blue light is electromagnetic radiation with a wavelength of between 440 and 500nm.Link to AmiGO
0.0441GO:0010218A change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of far red light stimulus. Far red light is electromagnetic radiation of wavelength 700-800nm. An example of this response is seen at the beginning of many plant species developmental stages. These include germination, and the point when cotyledon expansion is triggered. In certain species these processes take place in response to absorption of red light by the pigment molecule phytochrome, but the signal can be reversed by exposure to far red light. During the initial phase the phytochrome molecule is only present in the red light absorbing form, but on absorption of red light it changes to a far red light absorbing form, triggering progress through development. An immediate short period of exposure to far red light entirely returns the pigment to its initial state and prevents triggering of the developmental process. A thirty minute break between red and subsequent far red light exposure renders the red light effect irreversible, and development then occurs regardless of whether far red light exposure subsequently occurs.Link to AmiGO

KEGG PATHWAY inferred to related to the module

SFGenesKEGG IDPathway nameLink to KEGG

Inter-species module comparison

Select a plant to compare co-expressed genes between species.
Glycine_max
Hordeum_vulgare
Oryza_sativa
Populus_trichocarpa
Triticum_aestivum
Vitis_vinifera
Zea_mays



Back to the CoP portal site

Back to the KAGIANA project homepage