Co-expression analysis

Gene ID At3g15360
Gene name TRX-M4 (ARABIDOPSIS THIOREDOXIN M-TYPE 4)
Module size 29 genes
NF 0.79
%ile 94.0



Co-expression network

pink confeito: Transcription factor, green bicone: Binding protein, red cone: Enzyme protein, blue sphere: Other protein
large node: VF over 0.50, middle node: over 0.25, small node: below 0.25



Co-expressed genes

Click gene/probe ID to show a list of genes that are co-expressed with the gene.

VF %ile CC Gene ID Repr. ID Gene name Func. O.I. H.G. S.X. Other DB
0.5368.61.00At3g15360820775TRX-M4 (ARABIDOPSIS THIOREDOXIN M-TYPE 4)encodes a prokaryotic thioredoxinO.I.H.G.S.X.
0.9195.60.97At3g16140820859PSAH-1 (photosystem I subunit H-1)Encodes subunit H of photosystem I reaction center subunit VI.O.I.H.G.S.X.
0.9195.60.96At5g46110834652APE2 (ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT 2)mutant has Altered acclimation responses; Chloroplast Triose Phosphate TranslocatorO.I.H.G.S.X.
0.8793.50.96At1g67740843099PSBYPsbY precursor (psbY) mRNA. This single nuclear gene is imported into the chloroplasts where it is processed into two integral membrane proteins with identical topology (PsbY-1 and PsbY-2). The protein appears to bind manganese but its role is not well understood.O.I.H.G.S.X.
0.8693.10.96At3g21055821657PSBTN (photosystem II subunit T)Encodes photosystem II 5 kD protein subunit PSII-T. This is a nuclear-encoded gene (PsbTn) which also has a plastid-encoded paralog (PsbTc).O.I.H.G.S.X.
0.8693.10.95At5g66570836789PSBO1 (PS II OXYGEN-EVOLVING COMPLEX 1)Encodes a protein which is an extrinsic subunit of photosystem II and which has been proposed to play a central role in stabilization of the catalytic manganese cluster. In Arabidopsis thaliana the PsbO proteins are encoded by two genes: psbO1 and psbO2. PsbO1 is the major isoform in the wild-type.O.I.H.G.S.X.
0.8592.40.96At4g05180825866PSBQ-2Encodes the PsbQ subunit of the oxygen evolving complex of photosystem II.O.I.H.G.S.X.
0.8491.90.95At2g06520815210PSBX (photosystem II subunit X)Encodes a protein with sequence similarity to the spinach photosystem II subunit PsbX.O.I.H.G.S.X.
0.8491.90.95At1g20340838622DRT112recombination and DNA-damage resistance protein (DRT112) One of two Arabidopsis plastocyanin genes. Predominant form, expressed 10x higher than PETE1. PETE2 is thought to be post-transcriptionally regulated via copper accumulation and is involved in copper homeostasis.O.I.H.G.S.X.
0.8491.90.95At1g52230841653PSAH2 (PHOTOSYSTEM I SUBUNIT H2)F:molecular_function unknown;P:photosynthesis;C:in 6 components;POO.I.H.G.S.X.
0.8391.40.95At5g01530830325chlorophyll A-B binding protein CP29 (LHCB4)F:chlorophyll binding;P:response to blue light, response to red light, response to far red light, photosynthesis;C:in 6 components;POMO.I.H.G.S.X.
0.8290.90.97At4g03280827996PETC (PHOTOSYNTHETIC ELECTRON TRANSFER C)Encodes the Rieske FeS center of cytochrome b6f complex. Gene is expressed in shoot but not in root. Mutant has reduced electron transport at saturating light intensities and Q-cycle activity is hypersensitive to acidification of the thylakoid lumen.O.I.H.G.S.X.
0.8190.40.96At1g54780841919thylakoid lumen 18.3 kDa proteinF:molecular_function unknown;P:biological_process unknown;C:thylakoid, thylakoid lumen, chloroplast thylakoid membrane, chloroplast thylakoid lumen, chloroplast;BPOMO.I.H.G.S.X.
0.8190.40.95At5g64040836525PSANEncodes the only subunit of photosystem I located entirely in the thylakoid lumen. May be involved in the interaction between plastocyanin and the photosystem I complex.O.I.H.G.S.X.
0.8190.40.95At4g02770828183PSAD-1 (photosystem I subunit D-1)Encodes a protein predicted by sequence similarity with spinach PsaD to be photosystem I reaction center subunit II (PsaD1)O.I.H.G.S.X.
0.8190.40.95At4g12800826892PSAL (photosystem I subunit L)Encodes subunit L of photosystem I reaction center.O.I.H.G.S.X.
0.8190.40.97At4g32260829359ATP synthase familyF:hydrogen ion transmembrane transporter activity;P:defense response to bacterium;C:thylakoid, chloroplast thylakoid membrane, chloroplast, membrane, chloroplast envelope;BOPMAFVO.I.H.G.S.X.
0.8190.40.95At1g31330840021PSAF (photosystem I subunit F)Encodes subunit F of photosystem I.O.I.H.G.S.X.
0.7989.10.95At1g08380837358PSAO (photosystem I subunit O)Encodes subunit O of photosystem I.O.I.H.G.S.X.
0.7989.10.95At4g28750828996PSAE-1 (PSA E1 KNOCKOUT)mutant has Decreased effective quantum yield of photosystem II; Pale green plants; Reduced growth rate; Subunit E of Photosystem IO.I.H.G.S.X.
0.7989.10.95At1g30380839918PSAK (photosystem I subunit K)Encodes subunit K of photosystem I reaction center.O.I.H.G.S.X.
0.7989.10.95At1g55670842016PSAG (PHOTOSYSTEM I SUBUNIT G)Encodes subunit G of photosystem I, an 11-kDa membrane protein that plays an important role in electron transport between plastocyanin and PSI and is involved in the stability of the PSI complex. PSI-G subunit is bound to PSI-B and is in contact with Lhca1. The protein inserts into thylakoids by a direct or "spontaneous" pathway that does not involve the activities of any known chloroplast protein-targeting machinery. PSI-G appears to be directly or indirectly involved in the interaction between Photosystem I and plastocyanin.O.I.H.G.S.X.
0.7788.00.94At1g15820838151LHCB6 (LIGHT HARVESTING COMPLEX PSII SUBUNIT 6)Lhcb6 protein (Lhcb6), light harvesting complex of photosystem II.O.I.H.G.S.X.
0.7788.00.95At1g06680837178PSBP-1 (PHOTOSYSTEM II SUBUNIT P-1)Encodes a 23 kD extrinsic protein that is part of photosystem II and participates in the regulation of oxygen evolution.O.I.H.G.S.X.
0.7788.00.97At2g46820819295PSI-P (PHOTOSYSTEM I P SUBUNIT)Encodes the P subunit of Photosystem I. About 25% of the TMP14 pool appeared to be phosphorylated, and this ratio is not affected by light. Contains seven phosphorylation sites on threonine residue and chloroplast targeting signal. Located in the proximity of PSI-L, -H and -O subunits.O.I.H.G.S.X.
0.7385.50.94At1g12900837848GAPA-2 (GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE A SUBUNIT 2)F:NAD or NADH binding, glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) activity, binding, glyceraldehyde-3-phosphate dehydrogenase activity, catalytic activity;P:glycolysis, glucose metabolic process, metabolic process;C:apoplast, chloroplast stroma, chloroplast, membrane, chloroplast envelope;BOPFMAO.I.H.G.S.X.
0.7083.50.95At4g01150828181unknown proteinF:molecular_function unknown;P:biological_process unknown;C:thylakoid, chloroplast thylakoid membrane, chloroplast, plastoglobule, chloroplast envelope;PBOO.I.H.G.S.X.
0.6882.20.94At1g60950842386FED Aencodes a major leaf ferredoxinO.I.H.G.S.X.
0.6882.20.94At3g26650822277GAPA (GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE A SUBUNIT)Encodes one of the two subunits forming the photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and as such a constituent of the supramolecular complex with phosphoribulokinase (PRK) thought to be linked by a small peptide encoded by CP12-2. GapA-1 is coordinately expressed by light with PRK and CP12-2. The enzyme activity, tested in leaf protein extracts dropped significantly after external sucrose treatment for the photosynthetic GAPDH (NADPH-dependent) but not for the cytosolic GAPDH (NADH-dependent).O.I.H.G.S.X.

Click More genes

Link to AtGenExpress Visualization Tool



Specific experiments for the module

Std2 GX %ile GSM ID Assay name GSE ID Experiment title Link to GEO
48.499.8GSM143308Tsu_genomic_hyb_3GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
45.399.8GSM205432Col_ leaf_ wildtype_rep01GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
44.699.8GSM143309Tsu_genomic_hyb_2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
41.899.8GSM253646Low_Mo_seg_pool_Ler_col_F2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
39.799.8GSM143307Low_Na_seg_pool_tsu_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
37.299.7GSM143310Tsu_genomic_hyb_1GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
36.299.7GSM143306High_Na_seg_pool_tsu_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
35.699.7GSM143299High_Na_seg_pool_ts_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
34.799.7GSM253652Ler 2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
34.699.7GSM253649Col-0-2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
34.199.7GSM253645High_Mo_seg_pool_Ler_col_F2GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
33.899.7GSM253650Ler 3GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
32.699.7GSM143302Ts_genomic_hyb_1GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
31.899.7GSM253651Ler 1GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
31.299.7GSM143298Low_Na_seg_pool_ts_col_F2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
30.899.7GSM253648Col-0-1GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
30.699.7GSM253647Col-0 3GSE10039Low_Mo_Arabidopsis_mapping_MOT1Link to GEO
30.299.7GSM143300Ts_genomic_hyb_3GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
30.199.7GSM143301Ts_genomic_hyb_2GSE6203Rus_etal_High_Na_Arabidopsis_accessions_mapping_HKT1Link to GEO
26.199.7GSM311291Laser capture microdissected (LCM) chalazal endosperm at the linear-cotyledon stage, biological replicate 1GSE12403Expression data from Arabidopsis seed compartments at the linear-cotyledon stageLink to GEO
24.999.6GSM311292Laser capture microdissected (LCM) chalazal endosperm at the linear-cotyledon stage, biological replicate 2GSE12403Expression data from Arabidopsis seed compartments at the linear-cotyledon stageLink to GEO
24.499.6GSM205364met1-3_leaf_second-selfed generation_rep01GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
23.099.6GSM205435Col_ leaf_ wildtype_rep02GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
18.499.5GSM205426met1-3_leaf_second-selfed generation_rep02GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
14.499.4GSM205428met1-3_leaf_fourth-selfed generation_rep01GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
14.199.4GSM205430met1-3_leaf_fourth-selfed generation_rep02GSE8279Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG MethylationLink to GEO
14.099.4GSM311274Laser capture microdissected (LCM) embryo proper at the pre-globular stage, biological replicate 2GSE12402Expression data from Arabidopsis seed compartments at the pre-globular stageLink to GEO
13.399.4GSM106833opr3_JA_0.5 hr_Rep1GSE4733Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profilingLink to GEO
13.199.4GSM133762Lindsey_1-14_torpedo-root_Rep1_ATH1GSE5730Transcriptional profiling of laser-capture micro-dissected embryonic tissuesLink to GEO
11.099.2GSM142625MC002_ATH1_A1.3-dubos-wtxGSE6151The mechanisms involved in the interplay between dormancy and secondary growth in ArabidopsisLink to GEO
10.499.2GSM142624MC002_ATH1_A1.2-dubos-wtxGSE6151The mechanisms involved in the interplay between dormancy and secondary growth in ArabidopsisLink to GEO
10.399.2GSM184556Whole roots 2hr KNO3 treated then incubated in protoplast-generating solution minus enzymes, biological rep2GSE7631Cell-specific nitrogen responses in the Arabidopsis rootLink to GEO
9.999.1GSM142623MC002_ATH1_A1.1-dubos-wtxGSE6151The mechanisms involved in the interplay between dormancy and secondary growth in ArabidopsisLink to GEO
9.799.1GSM142631MC002_ATH1_A3.3-dubos-6kxGSE6151The mechanisms involved in the interplay between dormancy and secondary growth in ArabidopsisLink to GEO
9.599.1GSM142629MC002_ATH1_A3.1-dubos-6kxGSE6151The mechanisms involved in the interplay between dormancy and secondary growth in ArabidopsisLink to GEO
9.499.1GSM184845Arabidopsis, root, longitudinal zone 4, standard conditions, NaCl, replicate 1GSE7639Expression analysis of root developmental zones after treatment with saltLink to GEO
9.499.1GSM184846Arabidopsis, root, longitudinal zone 4, standard conditions, NaCl, replicate 2GSE7639Expression analysis of root developmental zones after treatment with saltLink to GEO
9.099.1GSM142630MC002_ATH1_A3.2-dubos-6kxGSE6151The mechanisms involved in the interplay between dormancy and secondary growth in ArabidopsisLink to GEO
8.799.0GSM184551Whole roots 2hr KCl control treated then incubated in protoplast-generating solution minus enzymes, biological rep1GSE7631Cell-specific nitrogen responses in the Arabidopsis rootLink to GEO

Biological processes inferred to relate to the module

SFGenesGO IDProcess NameLink to AmiGO
0.22011GO:0015979The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide (CO2) using energy obtained from light rather than from the oxidation of chemical compounds.Link to AmiGO
0.1403GO:0009773Electrons move from the primary electron acceptor (Quinone, X) through a chain of electron transport molecules in the thylakoid membrane until they reach ferredoxin which passes the electron to the ultimate electron acceptor; NADP.Link to AmiGO
0.1333GO:0019684The light reactions of photosynthesis, which take place in photosystems II and I. Light energy is harvested and used to power the transfer of electrons among a series of electron donors and acceptors. The final electron acceptor is NADP+, which is reduced to NADPH. NADPH generated from light reactions is used in sugar synthesis in dark reactions. Light reactions also generate a proton motive force across the thylakoid membrane, and the proton gradient is used to synthesize ATP. There are two chemical reactions involved in the light reactions: water oxidation in photosystem II, and NADP reduction in photosystem I.Link to AmiGO

KEGG PATHWAY inferred to related to the module

SFGenesKEGG IDPathway nameLink to KEGG
0.3331700195PhotosynthesisLink to KEGG PATHWAY
0.083200196Photosynthesis - antenna proteinsLink to KEGG PATHWAY
0.038200710Carbon fixation in photosynthetic organismsLink to KEGG PATHWAY
0.0301901100Metabolic pathwaysLink to KEGG PATHWAY

Inter-species module comparison

Select a plant to compare co-expressed genes between species.
Glycine_max
Hordeum_vulgare
Oryza_sativa
Populus_trichocarpa
Triticum_aestivum
Vitis_vinifera
Zea_mays



Back to the CoP portal site

Back to the KAGIANA project homepage